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Our project focuses on researching and defining architecture guidelines for developing multimedia
systems to support human learning. We base these guidelines on principles from cognitive
science. During the last six months our efforts have been focused on two fronts. The first has
been the continued development of an environment for teaching students chemistry, specifically,
Lewis Structures. The second has been the specification of a generalized architecture for cognitive

multimedia learning environments that operate on a web-based system. We are interested in how
presentation factors and orientation tasks affect learning.

November 16, 1996 - May 16, 1997

Important Findings and Problems Encountered

ChemLab

We conducted two new experiments using the ChemLab software. The first of the new
experiments was conducted using students at Emory University. We made a number of usability

changes to the ChemLab software that we had used in a prior experiment based on feedback from
students.

In the prior experiment we had used two conditions: directed browsing and problem solving. In
the directed browsing condition students were asked a series of fact questions concerning Lewis
Structures (e.g., How many valence electrons does Sulphur have? What is a lonepair? What is
the most electronegative element? What is the chemical formula for Hydrazine?) and could
navigate ChemLab to find answers. In the problem solving condition students were asked to solve
a few Lewis Structure problems, that is, to determine the distribution of electron pairs and bonds
for a particular molecule. After exploring ChemLab in one of these two ways, students were given
a post-test (they were warned ahead of time they would be getting a post-test after interacting with
the software). We did not find any difference in post-test performance between the two groups.
We did, however, find differences in their browsing patterns in ChemLab suggesting that the
orienting tasks (answering questions or solving problems) did influence how they interacted with
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the software. One concern though was that we did not have a control group that could serve as a
baseline to compare the performance of the other two groups.

In the first of the new experiments we had four conditions: directed browsing, problem solving,
paper, and no ChemLab (N = 124). The first two conditions were the same as in the prior study
(albeit with an improved interface). The paper condition involved students receiving a print-out of
the Hypercard stack for ChemLab and being asked to study it in preparation for the post-test.
Finally, students from the class who did not interact with ChemLab served as a "true” baseline.
All students from the class took a final exam as part of their regular chemistry course. We were
given permission to obtain final exam scores as well as copies of the final exams (coded by
experimentally-assigned numbers). This allowed us to examine in detail performance on final
exam questions dealing specifically with Lewis Structure problems.

The results from this study suggest that the ChemLab software did not help performance.
However, once again their may be an interface-design explanation for this. First, consider the
results. Performance on the post-test and the final exam by the different groups was as follows:

Paper Directed Problem No
Browsing Solving ChemLab

Avg. No. of Post-Test Fact
Questions Cor. (max = 7) 5.9 5.3 4.6 N/A
Avg. No. of Post-Test
Problems Cor. (max = 4) 1.8 0.8 1.0 N/A
Avg. No. of Lewis-Structure
Related Final Exam
Problems Cor. (max = 4) 3.0 3.5 3.0 3.1

The performance differences on the post-test are statistically significant and suggest that the paper
group was generally outperforming the other two on the post-test. The differences among the
groups on the final exam were not significant although there was a trend favoring the directed
browsing group.

Post-experiment interviews with a subset of students who used ChemLab suggested that one
problem with the instructions in the software was that they did not make it clear that once students
finished answering the orienting questions or problems the program would terminate and they
would then go directly to the post-test. As a result, many of the students who interacted with the
ChemLab software (as opposed to the paper version) spent relatively little time with the material.
This may have accounted for the superior performance of the paper group on the post-test.

Performance on the final exam (which occurred several weeks after the experiment) suggests that
the use of ChemLab might provide better retention of material as indicated by the trend towards
better performance by the directed browsing condition.

In the second of the new experiments we altered the instructions to the ChemLab software to make
it clearer to students that once they were done answering questions the ChemLab software would
terminate. We ran this experiment at Georgia Tech partly in order to see if overall performance
would be similar to our Emory sample. We were able to get only about seven participants per
condition unfortunately and were not allowed access to final exams. While overall performance
was higher than the Emory sample, the relative performance among the groups was about the same
with the paper group showing some advantages over the other groups:




Paper Directed Problem

Browsing Solving
Avg. No. of Post-Test Fact
Questions Cor. (max = 7) 6.3 5.6 5.4
Avg. No. of Post-Test
Problems Cor. (max = 4) 2.7 2.4 2.3

We have identified several changes we would like to make to the ChemLab software to better
support navigating the system. These changes should also avoid the problem of students
unknowingly finishing the program prematurely and having the program terminate before they
have finished looking at all of the information.

One area of change will involve the introduction. Currently the introduction is approximately 10
screens of information, much of it involving how to use the system itself. This may have caused
many students to become bored and inattentive before beginning the main part of the program. It is
expected that by reworking some other aspects of the ChemLab interface, and by revising and
reordering the introduction, the introduction can be shortened to 4-6 screens of information, most
of it involving necessary background information about bonds and bond formation. In addition,
the program will not terminate when learners are done answering questions/problems. Rather, it
will terminate when learners indicate they are done exploring. Finally, greater emphasis will be
placed on what the overall activity flow will be like, namely moving between the problem/question
screen, the information screen, and the molecule construction kit.

Several other proposed changes to the ChemLab interface itself involve the method of navigation
and the representation of the visual affordances for navigation. For instance, the full flow chart
map of the entire sequence of steps will be made "clickable," so that students may click on the box
for a particular step and be taken directly to the information for that step (currently the full map is
not clickable - it only shows a full view of the steps to be taken). This will provide a more direct
method of navigating from a global view of the overall procedure to the information details for a
particular step in the procedure. Another change will be to make the location of the current step on
the information screen more stable and informative. Currently the position of the boxes
representing the previous, current, and next steps on the information window move around, and
thus do not provide any information about whether they are primary steps, primary sub-steps, or
secondary sub-steps. We believe that this may have made it more difficult to understand how the
current step fit into the overall procedure. Also, the "Back" and "Next" buttons will be removed,
and arrows pointing up and down in the navigation area of the information screen will be added
that will scroll the steps displayed in that area up and down. Students will have to click directly on
a step to display the information for that step (removing some of the ambiguity of "Back" and
"Next"). The "Home" button will be reworded to say "Back to Step 1" to be more direct. The
information radio buttons (definition, example, worked problem, and problem set) will be moved
toward the top of the window to emphasize them more. The "Why?" button will be moved over to
the right side of the window with the actual information content and away from the navigation
buttons. Finally, the remaining navigation buttons (Full Map, Work, MCK, Back to Step 1) will
be consolidated and placed in between the radio buttons and the clickable mini-navigation map.

Overall this reorganization should make the intended flow and actions more intuitive and easier to
perform for the user, and clearly distinguish between the navigation and information functions of
the various window elements.




Creating a Generalized Architecture for Cognitive Multimedia Learning Environments

Based on our experiences with ChemLab and Algonet, we are continuing to work toward a
generalizable architecture for cognitive multimedia learning environments. We noted that our
efforts to test alternative navigation and media selections were hampered by the complexity of
building testbeds. While still exploring these issues in ChemLab, we have chosen to develop a
generalized architecture in which we could easily change navigation, content, and even domain.

As reported in past reports, we have developed a knowledge structure based on cognitive
multimedia theory that we hypothesize can be used to support students in learning how to conduct
procedures (from repair to troubleshooting to installation) in any domain, using a wide variety of
approaches (from direct instruction to scaffolded apprenticeship, from menu-based navigation to
virtual reality, and from text-only to full-video multimedia content). Our first step toward testing
our generalizability hypothesis is to construct a simple educational application structured with this
architecture. The example domain that we have chosen is “plumbing,” where our content includes
how to clear a clogged drain, how to install a toilet, and how the hot water system works at an
abstract level.

We implemented the core architecture (in Java) that would display content based on student
experience and a set of display rules (in a production rule format); basically, the core is a cognitive
multimedia display engine. The idea is that content would be provided to the display engine along
with a set of rules for how to present this content and a memory of information that the user had
already provided, e.g., “If the user has identified the problem as a leaky faucet, present the known
causes for a leaky faucet along with links to the procedures for testing for each of those causes.”
Next, we needed content and a sample set of rules.

We developed a simple database application (in Apple Hypercard) for constructing knowledge
elements to represent this content. However, after constructing several pieces of the knowledge-
base, we found that the database application was clumsy to use and difficult to express complex
content in. Basically, our problem was that we were constructing knowledge elements that were
relating to other elements in a variety of ways, and that was difficult to represent in a simple user
interface.

Therefore, we decided to design and develop a markup language which would allow us to
represent linkages between knowledge elements at a symbolic level. We are referring to this
language as PML (Procedural Markup Language). We have successfully:

* Defined PML (using the SGML standard DTD [document type definition] structure; see
below),

* Written a simple PML to HTML translator to provide a means for reviewing the knowledge
structures,

» Translated our database content into PML, and
¢ Translated our PML content into HTML for review. -

All of these components are available for inspection at:
http://www.cc.gatech.edu/gvu/cognitive/cognitive-multimedia/home.html

In parallel, we developed a first set of rules for how to present instruction from our knowledge-
base. These rules are used in the current PML-to-HTML translator, but in a static form — i.e., the
static HTML cannot remember previous student selections. Our next step is to use the PML content
to populate our cognitive multimedia engine and to encode our rules as production rules usable by
the multimedia engine. At that point, we will have completed a proof-of-concept of the




generalizable system and can move on to conduct further experiments on navigation and media
choices and push on to explore other domains.

<!DOCTYPE PML.dtd [

This is the document type description for a language we're calling
PML. First we'll describe the elements in the language.

<!ELEMENT PML - - (thing | state | procedure)+ >

A PML document consists of "thing"s, "state"s and "procedure's. There
may be any number of each of them and they can occur in any order but
there must be at least one element in the document. A PML document may
not be empty.

<!ELEMENT (thing | state | procedure) - - (name+, author+, (description+ &
justification? & relations? & example* & counter* )) >

Things, states, and procedures consist of the following: at least one
name followed by at least one author. Then the following may occur in
any order: at least one description, only one justification, only one
set of relations, any number of examples, any number of counterexamples.
"Any number" includes zero. When something occurs more than once, the
occurances must be "grouped" together - you can't have examples mingled
with descriptions, for instance. Procedures may no longer be nested.

<!ELEMENT (name | author | description | justification | example | counter)
- (#PCDATA) >

Names, authors, descriptions, etc. may occur inline and are composed of
character data only -- they may not include other tags defined in PML.

<!ELEMENT relations - - (link+) >
Relations consists of a set of links. There must be at least one.
<!ELEMENT link - 0 (target+)>

A link consists of a set of targets. There must be at least one.
Link does not require an énd tag because it can only be followed
by another link or the end of the relations tag.

<!ELEMENT target - o EMPTY>

A target is an empty tag and therefore does not require an end

tag. An attribute (defined below) will be used to refer to the
element we're using as the target. Doing it this way allows the-.
parser to flag when we're refering to an element that doesn't
exist. Here's what a sample of the relations part would look like:

<RELATIONS>

<LINK type=steps>
#The ordering here is important and implies Next & Previous links
<TARGET tid="Project 2, Step 1"> #These are the IDs of other procedures
<TARGET tid="Project 2, Step 2">
<TARGET tid="Project 2, Step 3">
<TARGET tid="Project 2, Step 4">




<LINK type=relatedto>
<TARGET tid="Another procedure">
<TARGET tid="Some thing">
<LINK type=isa>
<TARGET tid="generic Project 2">
</RELATIONS>

Now we define the attributes for the various elements.

<!ATTLIST (thing | state | procedure)
id iD #REQUIRED>

Things, states and procedures are required to have an ID which will
be unique across the database.

<!ATTLIST (author | description | justification | example | counter )
src CDATA #IMPLIED>

The tags listed may have an optional "src" attribute to allow these
tags to refer to external resources. These will generally be filenames,
but can be any character data.

<!ATTLIST prodecure
difficulty CDATA #IMPLIED>

Procedures may have a difficulty rating. We're not going to define what
those ratings are, though.

<!ATTLIST description
detail CDATA #IMPLIED}

Descriptions may have a detail rating. Again, we'll leave the actual
values undefined.

<!ATTLIST link
type (uses | isa | hasa | connectsto | relatedto | example |
counterexample | steps | pre | post | problem | repair) #REQUIRED>

Links must have a type specified. The valid types are listed above. We could
open this up so that new types may be specified as well.

<!ATTLIST target
tid IDREF #REQUIRED>

Targets are required to have a tid attribute (target-ID). The tid should be
an ID which is elsewhere in the system.
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Changes in Overall Plan and Personnel

We replaced one paid graduate student (Viren Shah) with two unpaid grad students (Teresa
Hubscher-Younger, Coleen Kehoe) who are interested in the project because it is related to their
thesis work.

Experiments
Described above.

Journal Publications

None
Papers Submitted for Publication

None
Papers in Refereed Conference Proceedings

None
Paper Presentations

None
Upcoming Research
We will be conducting a new ChemLab experiment with the redesigned interface and improved
instructions. Besides differences in browsing patterns and post-test performance, we will also be
interested in observing whether the redesigned ChemLab software helps students with long-term

retention as measured by final exam performance.

We will continue to develop PML and apply it to the home repair in order to come up with a web-
based system that we can test.




